
1

EARLY SIZING AND ESTIMATING OF SOFTWARE QUALITY,
SCHEDULES, EFFORT, AND COST

Capers Jones, Vice President and Chief Technology Officer; Namcook Analytics LLC,

Copyright © 2018 by Capers Jones. All rights reserved.

Abstract

Most methods of software sizing and estimating are based on software requirements and design
documents, or on the source code itself. For both new applications and enhancements this means
that substantial funds will have been expended before sizing and estimating take place. Early
sizing and estimating pay handsome dividends due to better results for on-schedule and within-
budget projects, as shown by table 1 from the paper:

Table 1: Results of Early Sizing and Estimating
 (Assumes 1000 Function Points and Java code)

On-Time In budget Defect $ per

Delivery Delivery Removal Function

Efficiency Point

 Automated sizing

95.00% 95.00% 97.50% $950
and estimating before

 requirements

 Automated sizing

80.00% 87.00% 92.50% $1,100
and estimating after

 requirements

 Manual sizing and
estimating 55.00% 60.00% 88.00% $1,350
after requirements

 No formal sizing or
estimating 44.00% 38.00% 85.00% $1,800

Namcook Analytics has developed a new method of early software sizing and estimating based
on pattern matching that can be used prior to requirements. This new method permits very early
estimates and very early risk analysis before substantial investments are made.

2

INTRODUCTION

Software sizing and estimating have been weak areas of software engineering since the industry
began. Even in 2017 a majority of the world’s software projects use educated guesses for sizing
and inaccurate and optimistic manual estimates instead of accurate automated parametric
estimates. Large companies are more sophisticated than small companies and tend to have more
sophisticated sizing and estimating methods and tools. It is useful to look at sizing and
estimating methods since the software industry began:

1950 to 1959

Sizing was based on lines of code (usually physical). Estimating was a combination of
guesswork and sparse historical data. In this era assembly was the only language at the
beginning of the decade so lines of code (LOC) still worked.

1960 to 1969

Sizing was based on lines of code. Estimating was still based on guesswork but some companies
such as IBM collected useful historical data that were helpful in estimation. Projects grew larger
so estimating requirements and design became important. Languages such as COBOL, Algol,
and others were developed and LOC metrics started to encounter problems such as difficulty in
counting lines of code for projects with multiple languages.

1970 to 1979

By the end of this decade over 80 programming languages were in existence and LOC metrics
were proven to be inaccurate and unreliable by IBM. LOC metrics can’t measure requirements
and design, which by 1979 were more expensive than code itself. Also, LOC metrics penalize
high-level languages such as APL and PL/I.

IBM was the first company to perform a formal study of the errors and problems with LOC
metrics, which occurred about 1972 with the author as the primary IBM researcher. This study
and the proof of LOC failure led IBM to fund the development of function point metrics.

Due to major problems and proven errors with lines of code metrics, IBM created the function
point metric for sizing and estimating software projects.

In 1973 the author developed IBM’s first parametric estimation tool, which was coded in APL by
Dr. Charles Turk. Also during this decade other estimating pioneers such as Dr. Barry Boehm,
Dr. Howard Rubin, Frank Freiman, and Dr. Larry Putnam developed early parametric estimation
tools.

3

Function points were put into the public domain by IBM in 1979 and expanded all over the
world. By the end of this decade many leading organizations such as IBM, ITT, TRW, RCA,
and the Air Force used proprietary parametric estimation tools and also used function point
metrics. The technique of “backfiring” or mathematical conversion from source code to function
points was developed by IBM in this decade and began to be used for sizing legacy applications.

1980 to 1989

During this decade function points became a major global metric for sizing and estimating. The
author’s SPQR/20 estimation tool released in 1984 was the world’s first parametric estimation
tool based on function points. It was also the first that included sizing for all deliverables
(requirements, design, code, test cases, etc.). The inventor of function point metrics, A.J.
Albrecht, had retired from IBM and came to work for the author.

Only function point metrics support sizing of requirements, design, user documents, and test
cases; this cannot be done using lines of code metrics. Other parametric estimating tools such as
CheckPoint, COCOMO, Estimacs, KnowledgePlan, SEER, SLIM etc. also entered the
commercial market.

Most major companies used either commercial or proprietary parametric estimation by the end of
this decade. (The author designed proprietary estimation tools under contract for several
telecommunication companies and also taught software sizing and estimation at AT&T, Bell
Northern, GTE, ITT, Motorola, Nippon Telephone, Nokia, Pacific Bell, Siemens, Sprint, and
others.)

The International Function Point User’s Group (IFPUG) was created in Canada and began to
provide certification examinations to ensure accurate function point counts. IFPUG later moved
its headquarters to the United States.

1990 to 1999

Due to the initial success and value of IFPUG function points, this decade saw the creation of a
number of function point metric “clones” that differed somewhat in their counting rules. Some
of these functional metric clones include in alphabetical order: COSMIC function points,
Engineering function points, Fast function points, Feature points, FISMA function points,
NESMA function points, Story points, Unadjusted function points, and Use-case points. Most of
these use counting rules similar to IFPUG but have various additional rules or changed rules.
This causes more confusion than value. It also introduced a need for conversion rules between
the various functional metrics, such as the conversion rules built into Software Risk Master
(SRM).

4

The International Software Benchmark Standards Group (ISBSG) was created in 1997 and began
to provide software benchmark data using only function points. (Lines-of-code data is hazardous
and unreliable for benchmarks.)

Other benchmark providers also began to offer benchmarks such as the author’s former
company, Software Productivity Research (SPR). Two former vice presidents at SPR also
formed software benchmark companies after SPR was sold in 1998.

Although function point metrics were widely used and were accurate when counted by certified
personnel, they were also slow and expensive. An average certified function point counter can
count about 500 function points per day, which limited the use of function points to small
projects.

By the end of this decade most U.S. telecom companies employed or contracted with between 5
and 12 certified function point counters.

2000 to 2010

Function point metrics had become the global basis of software benchmarks and were widely
used in parametric estimation tools. However the slow counting speeds and high costs of manual
function point analysis led to research in easier and faster methods of function point analysis.

Many companies developed function point tools that provided mathematical support for the
calculations. These speeded up function point counting from about 500 function points per day
to more than 1000 function points per day.

Several companies (CAST Software and Relativity Technologies) developed automated function
point counting tools. These tools examined source code from legacy applications and created
function points based on this code analysis. These tools only work for applications where code
exists, but instead of 500 function points per day they can top 50,000 function points per day.

In 2012 IFPUG issued the new SNAP metric (software non-functional assessment process. This
metric has been added to the Namcook sizing method.

The author and Namcook Analytics developed a proprietary sizing method based on pattern
matching that is part of the Software Risk Master (SRM) estimating tool.. This method uses a
formal taxonomy and then extracts size data from the Namcook knowledge base for projects that
have the same taxonomy pattern.

The Namcook sizing method is included in the Software Risk Master (SRM) estimating tool.
SRM sizing is unique in being able to size and estimate projects before requirements, or 30 to
180 days earlier than any other known method.

5

The SRM method is the fastest available method of sizing, and averages about 1.8 minutes to
size any application. Of course measured speed varies with the sizes of the applications
themselves, but SRM can size at speeds of well over 300,000 function points per day.

SRM sizing is also unique in being able to predict size in a total of 23 metrics at the same time:
all forms of function points, logical and physical lines of code, story points, use-case points, and
even RICE objects for ERP packages.

SRM also collects new benchmark data every month, because estimating tools need continuous
updates to their knowledge bases to stay current with technical changes such as cloud computing,
SaaS, estimating social network software, and other technology innovations. In fact the
commercial estimating companies all collect benchmark data for the same reason.

The State of the Art of Sizing and Estimating in 2017

As of 2017 the state of the art varies with the size and sophistication of the company. Large
technology companies such as medical devices, computers, avionics, telecommunications etc.
typically use multiple sizing and estimating methods and look for convergence. Most employ or
use function point counters. Most technology companies use high-end commercial estimation
tools such as Software Risk Master (SRM) or have built their own proprietary estimation tools.
Some smaller companies and universities use the open-source COCOMO estimating tool, which
is available without cost.

Mid-sized companies and companies in the banking, insurance, and other areas are not quite as
sophisticated as the large technology companies. (It is interesting that the Bank of Montreal was
the first major company to use function points and was a founder of IFPUG.)

However a recent survey of over 100 companies found that function point metrics were now
dominant for estimating and benchmarks in the U.S., Europe, Japan, and Brazil and these
countries have many more function point users than other metrics such as story points or the
older LOC metrics. About 70% of mid-sized companies still use manual estimates but about
30% use one or more parametric estimating tools such as Software Risk Master (SRM).

Many agile projects use manual estimates combined with the “story point metric.” Unfortunately
story points have no ISO or OMG standards and vary by hundreds of percent from company to
company. They are almost useless for benchmarks due to the low quantity of available data and
the poor accuracy of story points for either estimates or measurements.

In 2012 a new metric for non-functional requirements called “SNAP” was created by IFPUG and
is now starting to be used. However as of 2016 this metric is so new that not a great deal of data
exists, nor do all companies use it. This metric needs additional definitions and continued
analysis.

6

Small companies with less than 100 employees only build small applications where risks are
low. About 90% of these companies use manual estimates. Most are too small to afford
function point consultants and too small to afford commercial estimating tools so they tend to
use backfiring and convert code size into function points. They still need function points
because all reliable benchmarks are based on function point metrics. Some small companies use
COCOMO because it is free, even though it was originally calibrated for defense software.
Table 1 shows the economic advantages of using automated sizing and estimating tools such as
Software Risk Master (SRM).

Table 1: Results of Early Sizing and Estimating
 (Assumes 1000 Function Points and Java code)

On-Time In budget Defect $ per

Delivery Delivery Removal Function

Efficiency Point

 Automated sizing

95.00% 95.00% 97.50% $950
and estimating before

 requirements

 Automated sizing

80.00% 87.00% 92.50% $1,100
and estimating after

 requirements

 Manual sizing and
estimating 55.00% 60.00% 88.00% $1,350
after requirements

 No formal sizing or
estimating 44.00% 38.00% 85.00% $1,800

As can be seen early sizing and estimating using a tool such as Software Risk Master (SRM) can
lead to much better on-time and within-budget performance than older manual estimating
methods or delayed estimates after requirements are completed.

Hazards of Older Metrics

Even some users of function point metrics are not fully aware of the problems with older metrics.
Here are short summaries of metric hazards in alphabetical order:

Automated function points: Several companies such as CAST Software and Relativity
Technologies have marketed automated function point tools that derive function point totals from
an analysis of source code. These tools have no published accuracy data. They also can only be
used on legacy software and cannot be used for early sizing and estimating of new software
applications before code exists.

7

Cost per defect penalizes quality and is cheapest for the buggiest software. This phenomenon
was discovered circa 1972 by the author and colleagues at IBM. Cost per defect cannot be used
at all for zero-defect software. The cost per defect for software with 1000 released defects will
be much cheaper than the same software with only 10 defects. Cost per defect is useless for
zero-defect software, which should be the goal of all projects. Defect removal costs per function
point provide a much better basis for studying software quality economics than cost per defect.

Design, code, and unit test (DCUT) metrics are embarrassingly bad. The sum total of effort for
design, code, and unit test is less than 37% of total software effort. Using DCUT is like
measuring only the costs of the foundations and framing of a house, and ignoring the walls, roof,
electrical systems, plumbing, etc. Only the software industry would use such as poor metric as
DCUT. All projects should measure every activity: business analysis, requirements, architecture,
design, documentation, quality assurance, management, etc.

Lines of code (LOC) metrics cannot measure non-coding work such as requirements,
architecture, design, and documentation which are more expensive than the code itself. (Coding
on large systems may only comprise 30% of total costs.) LOC cannot measure bugs in
requirements and design, which often are more numerous than coding bugs. Even worse, LOC
metrics penalize high-level languages and make low-level languages such as assembly and C
look better than high-level languages such as Visual Basic and Ruby. Also, many languages use
buttons or controls and allow “programming” without even using lines of code. LOC has no
ISO standard counting rules (physical and logical code are counted about equally), and also no
certification exams. There are automatic counting tools for LOC but these vary in what they
count. Finally, an average application in 2015 uses at least two languages and sometimes up to a
dozen different programming languages. Code counting for multiple programming languages is
very complex and slow. Typical combinations are Java, HTML, MySQL, and possibly others as
well.

Technical debt by Ward Cunningham is a brilliant metaphor but not yet an effective metric.
Technical debt has no ISO standards and no certification exams. Among the author’s clients
technical debt varies by more than 200% between companies and projects. Worse, technical debt
only covers about 17% of the total costs of poor quality. Missing with technical are canceled
projects that are never delivered; consequential damages to users; litigation costs for poor
quality; and court awards to plaintiffs for damages caused by poor quality.

Story point metrics are widely used with agile projects. However story points have no ISO
standards or OMG standards and no certification exams. Among the author’s clients story points
vary by more than 400% between companies and projects. There are few if any benchmarks
based on story points.

Use-case metrics are widely used with RUP projects. However use-case points have no ISO
standards and no certification exams. Among the author’s clients use-case points vary by more
than 100% between companies and projects. There are few if any benchmarks based on use-case
points.

8

Overall function point metrics provide the most stable and effective metrics for analyzing
software quality economics, software productivity, and software value. The major forms of
function points have ISO standards and certification exams; unlike the older and hazardous
metrics discussed above.

As illustrated elsewhere in this report the detailed metrics used with function points include but
are not limited to:

Table 2: Software Risk Master (SRM) Function Point and SNAP Usage Circa 2017

1. Predicting size in function points, SNAP, LOC and a total of 23 metrics
2. Early sizing and risk analysis via pattern matching before full requirements
3. Sizing of internal, COTS, and open-source applications
4. Sizing and estimating both new projects and legacy repairs and renovations
5. Sizing and estimating 15 types of software (web, IT, embedded, defense, etc.)
6. Source code sizing for 84 programming languages and combinations of languages
7. Sizing requirements creep during development (> 1% per calendar month)
8. Sizing post-release requirements growth for up to 10 years (> 8% per year)
9. Sizing defect potentials per function point/SNAP point (requirements, design, code, etc.)
10. Defect prevention efficiency (DPE) for JAD, QFD, modeling, reuse, etc.
11. Defect removal efficiency (DRE) for pre-test and test defect removal methods.
12. Document sizing for 30 document types (requirements, design, architecture, etc.)
13. Sizing test cases per function point and per SNAP point for all forms of testing
14. Estimating delivered defects per function point and per SNAP point
15. Activity-based costs for development
16. Activity-based costs for user effort on internal projects
17. Activity based costs for maintenance
18. Activity-based costs for customer support
19. Activity-based costs for enhancements
20. Occupation-group effort for 25 common software skills (coders, testers, analysts, etc.)
21. Total cost of ownership (TCO) including cyber-attack costs
22. Cost of quality (COQ) for software applications including cyber-attacks and litigation
23. Estimating the newer technical debt metric which is ambiguous in 2016
24. Risk probabilities for 30 common software risk factors (delays, overruns, cancellation)
25. Estimating productivity and quality results for 60 software development methodologies
26. Estimating ERP deployment, customization, and training costs
27. Software litigation costs for failing outsource projects (both plaintiff and defendant)
28. Estimating venture funding rounds, investment, equity dilution for software startups
29. Estimating cyber-attack deterrence and recovery costs (new in 2016)
30. Portfolio sizing for corporate portfolios (> 5000 applications,10,000,000 function points,

and 1,500,000 SNAP points) including internal, COTS, and open-source.

All 30 of these sizing features are included in the Software Risk Master (SRM) sizing
methodology as of 2017.

9

Metrics Used with Function Point Analysis

The counting rules for function points are available from the various function point associations
and are too complicated to discuss here. If a company wants to learn function point counting, the
best methods are to either hire certified function point counters or send internal personnel to
learn function point analysis and take a certification exam offered by the function point
associations.

The current IFPUG counting rule manual is available from the IFPUG organization and is about
125 pages in size: too big to summarize here. Counting rules are also available from other
function point communities such as COSMIC, FISMA, NESMA, etc.

Once the function point total for an application is known, then function points can be used with a
variety of useful supplemental metrics to examine productivity, quality, costs, etc. Some of the
leading metrics used with function points include in alphabetical order:

Assignment scope

This is the amount of work typically assigned to a software team member. It can be expressed
using function points or natural metrics such as pages of documents and lines of code. For
example a technical writer might be assigned a user manual of 200 pages. Since software user
manuals average about 0.15 pages per function point that would be an assignment scope of 30
function points.

Typical assignment scopes using function points for a project of 1000 function points would be:

Requirements = 460 function points

Design = 345 function points

Coding = 130 function points

Testing = 150 function points

This kind of data is available for 40 activities from Namcook Analytics LLC. This data is a
standard feature of Software Risk Master (SRM) but limited to 7 activities.

Cost per function point

As of 2017 cost per function point is one of the most widely used economic metrics in the world.
Several national governments such as Brazil and South Korea demand cost per function point in
all bids and software contracts. India uses cost per function point to attract business to Indian
outsource companies. The cost per function point metric can be used for full projects and also
for individual activities such as requirements, design, coding, etc.

10

There are several cautions about this metric however. For long-range projects that may take
more than 5 years inflation needs to be factored in. For international projects that may include
multiple countries local costs and currency conversions need to be factored in. In the U.S. as of
2015 development costs per function point range from less than $500 for small internal projects
to more than $3,000 for large defense projects.

Cost per function point varies from project to project. Assuming a cost structure of $10,000 per
month and 1000 function points typical costs per function point would be:

Requirements = $41.79

Design = $66.87

Coding = $393.89

Testing = $236.34

Here too these are standard results from Software Risk Master (SRM). This kind of data is
available for 40 activities from Namcook Analytics LLC. SRM shows 7 activities.

Defect potentials

Defect potentials are the sum total of bugs that are likely to be found in requirements,
architecture, design, code user documents, and bad fixes or secondary bugs in bug repairs. U.S.
totals for defect potentials range from < 2.00 defects per function point to > 6.00 defects per
function point. This metric is also used for specific defect categories. Requirements defects per
function point range from <0.25 per function point to > 1.15 per function point. The full set of
defect potentials include defects in requirements, architecture, design, code, documents, and “bad
fixes” or secondary bugs in defect repairs themselves. There are also defects in test cases, but
these are very seldom studied so there is not enough available data to include test-case defects in
defect potentials as of 2016.

Defect potentials are ONLY possible with function point metrics because LOC metrics cannot be
used for requirements and design defects. Typical values for defect potentials in function points
circa 2017 are shown below:

Table 3: Average Software Defect Potentials circa 2016 for the United States

• Requirements 0.70 defects per function point
• Architecture 0.10 defects per function point
• Design 0.95 defects per function point
• Code 1.15 defects per function point
• Security code flaws 0.25 defects per function point

11

• Documents 0.45 defects per function point
• Bad fixes 0.65 defects per function point
• Totals 4.25 defects per function point

As can be seen, defect potentials include bugs in many sources and not just code. As can be
seen, requirements, architecture, and design defects outnumber code defects. Defect potential
estimation is a standard feature for Software Risk Master (SRM).

Defect removal efficiency (DRE)

This metric does not use function points themselves, but rather shows the percentage of defect
potentials removed before release. Typical values would be 80% of requirements defects are
removed before release but 98% of code defects. Software Risk Master (SRM) predicts both
defect potentials and individual removal efficiency levels for requirements defects, architecture
defects, code defects, document defects, and bad-fix injections.

Typical values for defect removal efficiency are about the following:

Requirements defects = 75%

Design defects = 85%

Architecture defects = 90%

Code defects = 97%

Defect removal efficiency is a standard feature of Software Risk Master (SRM). DRE in SRM
includes 1 pre-test inspections, 2 static analysis, 3 desk checking, and 4 pair programming.

Test DRE is shown for six kinds of testing: 1 Unit, 2 Regression, 3 Component; 4 Performance,
5 System, Acceptance.

12

Function points per month

This is a common productivity metric but one that needs to be adjusted for countries, industries,
and companies. Work-hours-per-function-point is more stable from country to country. The
typical number of work hours in the U.S. is 132 hours per month; in India it is about 190 hours
per month; in Germany it is about 116 hours per month. Thus the same number of work hours
would have different values for function points per month. Assume a small project took exactly
500 work hours. For India this project would take 2.63 months; for the U.S. 3.78 months; for
Germany 4.31 months. The metric of work hours per function point is stable across all countries,
but function points per month (and the older LOC per month) vary widely from country to
country.

Production rate

This metric is the amount of work a software team member can perform in a given time period
such as an hour, day, week, or month. This metric can be expressed using function points or
natural metrics such as Lines of code or pages. For example a technical writer might be able to
write 50 pages per month. A programmer may be able to code 1,000 lines of code per month. A
tester may be able to run 500 test cases per month, and so on. The same activities can also be
measured using work hours per function point, or a combination of function points and natural
metrics.

Requirements creep

Because applications add new requirements and new features during development, size must be
adjusted from time to time. Requirements grow and change at measured rates of between 1% per
calendar month and about 4% per calendar month. Thus an application sized at 1,000 function
points at the end of requirements may grow to 1,100 function points by delivery. Software keeps
growing after release, and the same application may grow to 1,500 function points after three or
four years of use. Software Risk Master (SRM) predicts growth and can also measure it. (This
is not a feature of most parametric estimation tools.)

Work hours per function point

This is a very common metric for software productivity. It has the advantages of being the same
in every country and also of being useful with every software development activity. Software
Risk Master (SRM) uses this as a standard metric for all estimates as shown below:

1. Requirements = 0.60 work hours per function point
2. Design = 0.90 work hours per function point
3. Coding = 5.00 work hours per function point
4. Testing = 3.50 work hours per function point
5. Quality = 0.50 work hours per function point

13

6. Documents = 0.40 work hours per function point
7. Management = 2.00 work hours per function point

TOTAL = 12.90 work hours per function point

Note: these values are just examples and not intended for use in actual estimates. There
are wide ranges for every activity. Also, the example only shows 7 activities, but similar
data is available from Namcook Analytics LLC for 40 activities.

The same metric or work hours per function point can also be used to measure user costs for
internal user effort, training costs for customers and team members, and even marketing and
sales effort for commercial software packages. It can also be used for customer support, bug
repairs, and even project management.

Function points are a powerful and useful metric but need additional metrics in order to actually
estimate and measure real projects.

Application Sizing Using Pattern Matching

The unique Namcook pattern matching approach is based on the same methodology as the well-
known Trulia and Zillow data bases for real-estate costs.

With the real-estate data bases home buyers can find the costs, taxes, and other information for
all listed homes in all U.S. cities. They can specify “patterns” for searching such as size, lot size,
number of rooms, etc.

Following are the main topics used for software pattern matching in the Namcook Software Risk
Master (SRM) tool:

Table 4: Patterns for Application Sizing and Risk Analysis

1. Local average team salary and burden rates
2. Paid and unpaid overtime planned for projects
3. Planned start date for the project
4. Desired delivery date for the project
5. Country or countries where the software will be built
6. Industry for which the software is intended
7. Locations where the software will be built (states, cities)
8. Experience levels for clients, team, management
9. Development methodologies that will be used (Agile, RUP, TSP, etc.) *
10. CMMI level of the development group *
11. Programming language(s) that will be used (C#, C++, Java, SQL, etc.) *

14

12. Amount of reusable materials available (design, code, tests etc.) *
13. Nature of the project (new, enhancement, etc.) *
14. Scope of the project (subprogram, program, departmental system, etc.) *
15. Class of the project (internal use, open-source, commercial, etc.) *
16. Type of the project (embedded, web application, client-server, etc.) *
17. Problem complexity ranging from very low to very high *
18. Code complexity ranging from very low to very high *
19. Data complexity ranging from very low to very high *
20. Number of anticipated users (for maintenance estimates)

Note: Asterisks “*” indicate factors used for pattern analysis for sizing.

All of these topics are usually known well before requirements. All of the questions are multiple
choice questions except for start date and compensation and burden rates. Default cost values
are provided for situations where such cost information is not known or is proprietary. This
might occur if multiple contractors are bidding on a project and they all have different cost
structures.

The answers to the multiple-choice questions form a “pattern” that is then compared against a
Namcook knowledge base of more than 25,000 software projects. As with the real-estate data
bases, software projects that have identical patterns usually have about the same size and similar
results in terms of schedules, staffing, risks, and effort.

Sizing via pattern matching can be used prior to requirements and therefore perhaps six months
earlier than most other sizing methods. The method is also very quick and usually takes less than
5 minutes per project. With experience, the time required can drop down to less than 2 minutes
per project.

The pattern matching approach is very useful for large applications > 10,000 function points
where manual sizing might take weeks or even months. With pattern matching the actual size of
the application does not affect the speed of the result and even massive applications in excess of
100,000 function points can be sized in a few minutes or less.

This method of sizing by pattern matching is covered by a U.S. utility patent application
submitted to the Patent Office in January of 2012. The algorithms for sizing by pattern matching
are included in the author’s tool Software Risk Master™ (SRM).

The method of sizing by pattern matching is metric neutral and does not depend upon any
specific metric. However due to the fact that a majority of the author’s clients use function point
metrics as defined by the International Function Point Users Group (IFPUG) the primary metric
supported is that of IFPUG function points counting rules 4.2. There are of course more projects
measured using IFPUG function points than those available using other metrics.

15

Many additional metrics can also be based on sizing via SRM pattern matching including but not
limited to:

Table 5: Metrics Supported by Namcook Pattern Matching

1. IFPUG function points
2. Automated code-based
3. Automated UML-based
4. Backfired function points
5. Non-functional SNAP points based on SNAP rules
6. COSMIC function points
7. FISMA function points
8. NESMA function points
9. Simple function points
10. Mark II function points
11. Unadjusted function points
12. Function points “light”
13. Engineering function points
14. Feature points
15. Use-case points
16. Story points
17. Lines of code (logical statements)
18. Lines of code (physical lines)
19. RICE objects
20. Micro function points
21. Logical code statements
22. Physical lines of code
23. Additional metrics as published

The pattern matching approach depends upon the availability of thousands of existing projects to
be effective. However now that function point metrics have been in use for more than 38 years
there are thousands of projects available.

One additional feature of pattern matching is that it can provide size data on requirements creep
and on deferred functions. Thus the pattern-matching method predicts size at the end of the
requirements phase, creeping requirements, size at delivery, and also the probable number of
function points that might have to be deferred to achieve a desired delivery date.

In fact the pattern matching approach does not stop at delivery, but can continue to predict
application growth year by year for up to 10 years after deployment.

16

The ability to size open-source and commercial applications or even classified weapons systems
is a unique feature of sizing via pattern matching. Table 6 shows 100 applications sized via
pattern matching with an average speed of about 1.8 minutes per application:

Table 6: Sizes of 100 Software Applications

Applications Size in SNAP Size in

Function Non-function Logical

NOTE: SRM sizing takes about 1.8 minutes Points Points Code

per application for sizing (patent-pending). IFPUG 4.3 IFPUG Statements

1 IBM Future System FS/1 (circa 1985 not completed)

515,323

108,218

68,022,636

2 Star Wars missile defense

352,330

42,280

32,212,992

3
World-wide military command and control
(WWMCCS)

307,328

56,856

28,098,560

4 U.S. Air Traffic control

306,324

59,121

65,349,222

5 Israeli air defense system

300,655

63,137

24,052,367

6 North Korean Border defenses

273,961

50,957

25,047,859

7 Iran's air defense system

260,100

46,558

23,780,557

8 SAP

253,500

32,070

18,480,000

9 Aegis destroyer C&C

253,088

49,352

20,247,020

10 Oracle

229,434

29,826

18,354,720

11 Windows 10 (all features)

198,050

21,786

12,675,200

12 Obamacare web (all features)

107,350

5,720

12,345,250

13 Microsoft Office Professional 2010

93,498

10,285

5,983,891

14 Airline reservation system

38,392

5,759

6,142,689

15 North Korean Long-Range Missile controls

37,235

4,468

5,101,195

16 NSA code decryption

35,897

3,590

3,829,056

17 FBI Carnivore

31,111

2,800

3,318,515

18 FBI fingerprint analysis

25,075

3,260

2,674,637

19 NASA space shuttle

23,153

3,010

2,116,878

20 VA Patient monitoring

23,109

3,004

4,929,910
21 Data Warehouse

17

21,895 2,846 1,077,896

22 NASA Hubble controls

21,632

2,163

1,977,754

23 Skype

21,202

3,392

1,130,759

24 Shipboard gun controls

21,199

4,240

1,938,227

25 American Express billing

20,141

3,223

1,432,238

26 M1 Abrams battle tank operations

19,569

3,131

1,789,133

27 Apple I Phone v6 oprations

19,366

2,518

516,432

28 IRS income tax analysis

19,013

2,472

1,352,068

29 Cruise ship navigation

18,896

2,456

1,343,713

30 MRI medical imaging

18,785

2,442

1,335,837

31 Google search engine

18,640

2,423

1,192,958

32 Amazon web site

18,080

2,350

482,126

33 State wide child support

17,850

2,321

952,000

34 Linux

17,505

2,276

700,205

35 FEDEX shipping controls

17,378

2,259

926,802

36 Tomahawk cruise missile

17,311

2,250

1,582,694

37 Denver Airport luggage (original)

17,002

2,166

1,554,497

38 Inventory management

16,661

2,111

1,332,869

39 EBAY transaction controls

16,390

2,110

1,498,554

40 Patriot missile controls

16,239

2,001

1,484,683

41 IBM IMS data base

15,392

1,939

1,407,279

42 Toyota robotic manufacturing

14,912

1,822

3,181,283

43 Android operating system

14,019

1,749

690,152

44 Quicken 2015

13,811

1,599

679,939

45 State transportation ticketing

12,300

1,461

656,000

46 State Motor vehicle registrations

11,240

1,421

599,467

47 Insurance claims handling

11,033

1,354

252,191

48 SAS statistical package

10,927

1,349

999,065

18

49 Oracle CRM Features

10,491

836

745,995

50 DNA Analysis

10,380

808

511,017

51 EZPass vehicle controls

4,751

594

253,400

52 Cat scan medical device

4,575

585

244,000

53 Chinese submarine sonar

4,500

522

197,500

54 Microsoft Excel 2007

4,429

516

404,914

55 Citizens bank on-line

4,017

655

367,224

56 MapQuest

3,969

493

254,006

57 Bank ATM controls

3,917

571

208,927

58 NVIDIA graphics card

3,793

464

151,709

59 Lasik surgery (wave guide)

3,625

456

178,484

60 Sun D-Trace utility

3,505

430

373,832

61 Microsoft Outlook

3,450

416

157,714

62 Microsoft Word 2007

3,309

388

176,501

63 Adobe Illustrator

2,507

280

178,250

64 SpySweeper antispyware

2,227

274

109,647

65 Norton anti-virus software

2,151

369

152,942

66 Microsoft Project 2007

2,108

255

192,757

67 Microsoft Visual Basic

2,068

247

110,300

68 All-in-one printer

1,963

231

125,631

69 AutoCAD

1,900

230

121,631

70 Garmin hand-helc GPS

1,858

218

118,900

71 Intel Math function library

1,768

211

141,405

72 PBX switching system

1,658

207

132,670

73 Motorola cell phone contact list

1,579

196

144,403

74 Seismic analysis

1,564

194

83,393

75 Sidewinder missile controls

1,518

188

60,730

76 Apple I Pod

1,507

183

80,347

19

77 Property tax assessments

1,492

179

136,438

78 Mozilla Firefox (original)

1,450

174

132,564

79 Google Gmail

1,379

170

98,037

80 Digital camera controls

1,344

167

286,709

81 IRA account management

1,340

167

71,463

82 Consumer credit report

1,332

165

53,288

83 Sun Java compiler

1,310

163

119,772

84 All in one printer driver

1,306

163

52,232

85 Laser printer driver

1,285

162

82,243

86 JAVA compiler

1,281

162

91,096

87 Smart bomb targeting

1,267

150

67,595

88 Wikipedia

1,257

148

67,040

89 Casio atomic watch with compass, tides

1,250

129

66,667

90 Cochlear implant (embedded)

1,250

135

66,667

91 APAR analysis and routing

1,248

113

159,695

92 Computer BIOS

1,215

111

86,400

93 Automobile fuel injection

1,202

109

85,505

94 Anti-lock brake controls

1,185

107

63,186

95 Ccleaner utility

1,154

103

73,864

96 Hearing aid (multi program)

1,142

102

30,448

97 LogiTech cordless mouse

1,134

96

90,736

98 Instant messaging

1,093

89

77,705

99 Twitter (original circa 2009)

1,002

77

53,455

100 Denial of service virus

866

-

79,197

Averages

42,682

6,801

4,250,002

Note: sizes assume IFPUG 4.3

Note: All sizes by Software Risk Master (SRM)

Copyright © 2016 by Capers Jones.

20

All rights reserved.

The ability to size open-source and commercial applications or even classified weapons systems
is a unique feature of sizing via pattern matching and also unique to Software Risk Master
(SRM).

No other sizing method can be used without access to at least published requirements. The
unique patter-matching size technique of SRM is the only one that can size software without
detailed inner knowledge. This is because SRM uses external patterns.

Note that SRM sizing is a proprietary trade secret and not available to the public. However a
visit to the Namcook web site www.Namcook.com includes a trial version that is run-limited but
can produce several project sizes before the limits are reached.

Early Risk Analysis

One of the main purposes of early sizing is to be able to identify software risks early enough to
plan and deploy effective solutions. (This is why Namcook calls its sizing and estimating tool
“Software Risk Master” (SRM).

If risks are not identified until after the requirements are complete, it is usually too late to make
changes in development methods.

The 25 major risks where application size has been proven to be a major factor in application
costs, schedules, and quality include but are not limited to:

Table 1: Software Risks Related to Application Size

1. Project cancellations
2. Project cost overruns
3. Project schedule delays
4. Creeping requirements (> 1% per month)
5. Deferred features due to deadlines (>20% of planned features)
6. High defect potentials
7. Low defect removal efficiency (DRE)
8. Latent security flaws in application when released
9. Error-prone modules (EPM) in applications
10. High odds of litigation for outsource contract projects
11. Low customer satisfaction levels
12. Low team morale due to overtime and over work
13. Inadequate defect tracking which fails to highlight real problems

http://www.namcook.com/

21

14. Inadequate cost tracking which omits major expense elements
15. Long learning curves by maintenance and support teams
16. Frequent user errors when learning complex new systems
17. Post-release cyber-attacks (denial of service, hacking, data theft, etc.)
18. High cost of learning to use the application (COL)
19. High cost of quality (COQ)
20. High technical debt
21. High maintenance costs
22. High warranty costs
23. Excessive quantities of rework
24. Difficult enhancement projects
25. High total cost of ownership (TCO)

All 25 of these software risks are proportional to application size, so early sizing is a useful
precursor for risk avoidance and risk mitigation. In estimating mode Software Risk Master
(SRM) predicts the odds of these risks occurring, and in measurement mode can measure their
impact on completed projects.

There are also many risks that are not directly related to project size: bankruptcies, theft of
intellectual property, cyber attacks on applications, loss of key personnel, and many more. In
total the Namcook Analytics LLC master list of current software risks includes a total of 210
software risk factors.

Lifetime Sizing with Software Risk Master™

Although this report concentrates on quality and the initial release of a software application, the
Software Risk Master (SRM sizing algorithms actually create 15 size predictions. The initial
prediction is for the nominal size at the end of requirements. SRM also predicts requirements
creep and deferred functions for the initial release.

After the first release SRM predicts application growth for a 10 year period. To illustrate the full
set of SRM size predictions, table 7 shows a sample application with a nominal starting size of
10,000 function points. All of the values are in round numbers to make the patterns of growth
clear:

22

Table 7: SRM Multi-Year Sizing Example

Copyright © by Capers Jones. All rights
reserved.

Patent application 61434091. February 2012.

Nominal application size

in IFPUG function points 10,000

SNAP points 1,389

Language C

Language level 2.50

Logical code statements 1,280,000

Function SNAP Logical

Points Points Code

1 Size at end of requirements 10,000 1,389

1,280,000

2 Size of requirement creep 2,000 278 256,000

3 Size of planned delivery 12,000 1,667

1,536,000

4 Size of deferred features -4,800

(667)

(614,400)

5 Size of actual delivery 7,200 1,000 921,600

6 Year 1 usage 12,000 1,667

1,536,000 Kicker

7 Year 1 usage 13,000 1,806

1,664,000

8 Year 1 usage 14,000 1,945

1,792,000

9 Year 1 usage 17,000 2,361

2,176,000 Kicker

10 Year 1 usage 18,000 2,500

2,304,000

11 Year 1 usage 19,000 2,639

2,432,000

12 Year 1 usage 20,000 2,778

2,560,000

13 Year 1 usage 23,000 3,195

2,944,000 Kicker

23

14 Year 1 usage 24,000 3,334

3,072,000

15 Year 1 usage 25,000 3,473

3,200,000

Kicker = Extra features added to defeat competitors.

Note: Simplified example with whole numbers for clarity.

Note: Deferred features usually due to schedule deadlines.

As can be seen from table 7 software applications do not have a single fixed size, but continue to
grow and change for as long as they are being used by customers or clients. Therefore
productivity and quality data needs to be renormalized from time to time. Namcook suggests
renormalization every at the beginning of every fiscal or calendar year.

Economic Modeling with Software Risk Master

Because Software Risk Master can predict the results of any methodology used for any size and
kind of software project, it is in fact a general economic model that can show the total cost of
ownership (TCO) and the cost of quality (COQ) for a variety of software development methods
and practices.

For example SRM can show immediate results in less than one minute for any or all of the more
than 60 developments; for any combination of 84 programming languages; and for work patterns
in any of more than 50 countries.

The 20 most common methodologies used by SRM customers as of 2016 include in alphabetical
order:

1. Agile development

2. Capability Maturity Model Integrated (CMMI)™ - all 5 levels

3. Extreme programming (XP)

4. Feature-driven development (FDD)

5. Formal inspections (combined with other methods)

6. Hybrid development (features from several methods)

7. Information Engineering (IE)

8. Iterative development

9. Lean software development (alone or in combination)

24

10. Mashup software development

11. Model-driven development

12. Open-source development models

13. Personal software process (PSP)

14. Rational unified process (RUP)

15. Reusable components and artifacts (various levels of reuse)

16. SCRUM (alone or with other methods)

17. Spiral development

18. Team software process (TSP)

19. Test driven development (TDD)

20. Waterfall development

It takes less than one minute to switch Software Risk Master from one methodology to another,
so it is possible to examine and evaluate 10 to 20 alternatives methods in less than half an hour.
(This is not a feature of most other parametric estimation tools.)

Software Risk Master can also model any level of development team experience, management
experience, tester experience, and even client experience.

Software Risk Master can also show the results of any of 84 different programming language or
combination of programming languages for more than 79 languages such as ABAP, Ada, APL,
Basic, C, C#, C++, CHILL, COBOL, Eiffel, Forth, Fortran, HTML, Java, Javascript, Objective
C, PERL, PHP, PL/I, Python, Ruby, Smalltalk, SQL, Visual Basic, and many other languages.
In theory Software Risk Master could support all 2,500 programming languages, but there is very
little empirical data available for many of these.

To add clarity to the outputs, Software Risk Master can show identical data for every case, such
as showing a sample application of 1000 function points and then changing methods,
programming languages, CMMI levels, and team experience levels. Using the same data and
data formats allows side-by-side comparisons of different methods and practices.

This allows clients to judge the long-range economic advantages of various approaches for both
development and total cost of ownership (TCO).

25

The Future of Sizing and Estimating Software with Function Points

Every year since 1975 more and more companies have adopted function point metrics; fewer and
fewer companies are using lines of code, story points, cost per defect, and other ambiguous and
hazardous metrics.

The governments of Brazil and Korea already use function points for government software
contracts (Korea sent a delegation to Namcook Analytics to discuss this policy.) Other countries
such as Italy and Malaysia are also planning to use function points for contracts (the author is an
advisor to the Malaysian software testing organization and knows that Malaysia is considering
function points for contracts).

Outside of the United States, the 25 countries with the most certified function point counters and
the widest usage of function points among technology companies include:

Countries Expanding Use of Function Points 2016

 1 Argentina
 2 Australia
 3 Belgium
 4 Brazil Required for government contracts

 5 Canada
 6 China
 7 Finland
 8 France
 9 Germany
 10 India
 11 Italy Required for government contracts

 12 Japan Required for government contracts
 13 Malaysia Required for government contracts
 14 Mexico

 15 Norway
 16 Peru
 17 Poland
 18 Singapore
 19 South Korea Required for government contracts

 20 Spain
 21 Switzerland
 22 Taiwan
 23 The Netherlands
 24 United Kingdom
 25 United States

26

It is interesting that several countries with large numbers of technology companies have not
utilized function point metrics to the same degree as the 25 countries shown above. Some of the
countries that do not seem to have internal function point user groups as of 2016 (although this is
uncertain) include in alphabetical order: China, Russia, Saudi Arabia, The Ukraine.

Because software is important in all countries and function points are the best metric for
estimating and measuring software quality, costs, and productivity it can be expected by about
2025 that every industrial country in the world will use function point metrics and have internal
function point user groups.

Even today in 2017 Namcook receives requests for function point data from over 45 countries
per year including several such as China, Colombia, Cuba, Jordan, Pakistan, Russia, Saudi
Arabia, and Viet Nam which are just starting to examine the usefulness of function point metrics.

For economic analysis and quality analysis of software, function points are the best available
metric and already have more benchmark data than all other metrics combined.

Summary and Conclusions

Large software projects are among the most risky business ventures in history. The failure rate
of large systems is higher than other kinds of manufactured products. Cost overruns and
schedule delays for large software projects are endemic and occur on more than 75% of large
applications. Indeed about 35% of large systems > 10,000 function points are cancelled and not
delivered: one of the most expensive forms of business failure in history.

Early sizing via pattern matching and function point metrics combined with early risk analysis
can improve the success rates of large software applications due to alerting mangers and software
teams to potential hazards while there is still time enough to take corrective actions prior to
expending significant funds.

27

References and Readings

Jones, Capers; A Guide to Selecting Software Measures and Metrics; CRC Press, 2017.

Jones, Capers; Software Methodologies, a Quantitative Guide, CRC Press, 2017.

Jones Capers; Quantifying Software: Global and Industry Perspectives; CRC Press, 2017.

Jones, Capers; The Technical and Social History of Software Engineering; Addison Wesley, 2014.

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality; Addison Wesley Longman,
Boston, MA; ISBN 10: 0-13-258220—1; 2011; 585 pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York, NY; ISBN 978-0-07-
162161-8; 2010; 660 pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, New York, NY; ISBN 978-0-07-150244-3;
2008; 662 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York, NY; 2007; ISBN-13: 978-0-07-
148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison Wesley Longman,
Boston, MA; ISBN 0-201-48542-7; 2000; 657 pages.

Jones, Capers; Conflict and Litigation Between Software Clients and Developers; Software Productivity
Research, Inc.; Burlington, MA; September 2007; 53 pages; (SPR technical report).

Additional Literature

The literature on function point metrics is quite extensive. Following are some of the more
useful books:

Abran, Alain; Software Estimating Models; Wiley-IEEE Computer Society; 2015

Abran, Alain; Software Metrics and Metrology; Wiley-IEEE Computer Society; 2010

Abran, Alain; Software Maintenance Management: Evolution and Continuous Improvement;
Wiley-IEEE Computer Society, 2008.

Abran, Alain and Dumke, Reiner R; Innovations in Software Measurement; Shaker-Verlag, Aachen, DE;
ISBN 3-8322-4405-0; 2005; 456 pages.

Abran, Alain; Bundschuh, Manfred; Dumke, Reiner; Ebert; Christof; and Zuse, Horst; Software
Measurement News; Vol. 13, No. 2, Oct. 2008 (periodical).

28

Bundschuh, Manfred and Dekkers, Carol; The IT Measurement Compendium; Springer-Verlag, Berlin,
DE; ISBN 978-3-540-68187-8; 2008; 642 pages.

Chidamber, S.R. & Kemerer, C.F.; “A Metrics Suite for Object-Oriented Design”; IEEE Trans. On
Software Engineering; Vol. SE20, No. 6; June 1994; pp. 476-493.

Dumke, Reiner; Braungarten, Rene; Büren, Günter; Abran, Alain; Cuadrado-Gallego, Juan J; (editors);
Software Process and Product Measurement; Springer-Verlag, Berlin; ISBN 10: 3-540-89402-0;
2008; 361 pages.

Ebert, Christof and Dumke, Reiner; Software Measurement: Establish, Extract, Evaluate, Execute;
Springer-Verlag, Berlin, DE; ISBN 978-3-540-71648-8; 2007; 561 pages.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software Project Risk;
Business Expert Publishing, Thomson, GA; 2010; ISBN10: 1-935602-01-9.

Gack, Gary; Applying Six Sigma to Software Implementation Projects;

http://software.isixsigma.com/library/content/c040915b.asp.

Galorath, Dan and Evans, Michael; Software Sizing, Estimation, and Risk Management;

Auerbach Publications, Boca Raton, FL; 2006.

Garmus, David & Herron, David; Measuring the Software Process: A Practical Guide to Functional

Measurement; Prentice Hall, Englewood Cliffs, NJ; 1995.

Garmus, David and Herron, David; Function Point Analysis – Measurement Practices for Successful
Software Projects; Addison Wesley Longman, Boston, MA; 2001; ISBN 0-201-69944-3;363 pages.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA; 1993;
ISBN 10: 0201631814.

Harris, Michael D.S., Herron, David, and Iwanicki, Stasia; The Business Value of IT; CRC
Press, Auerbach; Boca Raton, FL; 2008; ISBN 978-14200-6474-2.

International Function Point Users Group (IFPUG); IT Measurement – Practical Advice from the Experts;
Addison Wesley Longman, Boston, MA; 2002; ISBN 0-201-74158-X; 759 pages.

Kemerer, C.F.; “Reliability of Function Point Measurement - A Field Experiment”; Communications of
the ACM; Vol. 36; pp 85-97; 1993.

Parthasarathy, M.A.; Practical Software Estimation – Function Point Metrics for Insourced and
Outsourced Projects; Infosys Press, Addison Wesley, Upper Saddle River, NJ; 2007; ISBN 0-321-
43910-4.

Putnam, Lawrence H.; Measures for Excellence -- Reliable Software On Time, Within Budget; Yourdon
Press - Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-567694-0; 1992; 336 pages.

http://software.isixsigma.com/library/content/c040915b.asp

29

Putnam, Lawrence H and Myers, Ware.; Industrial Strength Software - Effective Management Using
Measurement; IEEE Press, Los Alamitos, CA; ISBN 0-8186-7532-2; 1997; 320 pages.

Royce, Walker; Software Project Management – Unified Framework; Addison Wesley, Boston,
MA; 1999.

Stein, Timothy R; The Computer System Risk Management Book and Validation Life Cycle; Paton Press,
Chico, CA; 2006; ISBN 10: 1-9328-09-5; 576 pages.

Stutzke, Richard D; Estimating Software-Intensive Systems; Addison Wesley, Upper Saddle River, NJ;
2005; ISBN 0-201-70312-2; 918 pages.

30

